Stereoselective 1,3-Dipolar Cycloadditions to (S)-1-Benzoyl-3-(cyanomethylidene)-5-(methoxycarbonyl)pyrrolidin-2-one

by Marko Škof^a), Jurij Svete^a)*, Branko Stanovnik^a)*, Ljubo Golič^a), Simona Golič-Grdadolnik^b), and Lovro Selič^a)

^a) Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
 ^b) National Institute of Chemistry, Ljubljana, Slovenia

(5S)-1-Benzoyl-3-[(E)-cyanomethylidene]-5-(methoxycarbonyl)pyrrolidin-2-one (5) was prepared in four steps from L-pyroglutamic acid (1). 1,3-Dipolar cycloadditions of diazomethane (6) and 2,4,6-trimethoxybenzonitrile oxide (7) gave substituted 1,2,7-triazaspiro[4.4]non-1-en-6-one 12 and 1-oxa-2,7-diazaspiro[4,4]non-1-en-6-one 13 in 38 and 20% de, respectively. On the other hand, reaction of 5 with *N*-phenylbenzonitrile imines 8 and 9, generated *in situ* from the corresponding hydrazonoyl chlorides 10 and 11, respectively, and Et₃N, furnished racemic pyrrolo[3,4-c]pyrazoles 14 and 15 in 61 and 56% de, respectively. Cycloaddition of nitrile oxide 7, when performed in the presence of Et₃N, led to pyrrolo[3,4-d]isoxazole 16 in 85% de.

Introduction. – 2-Substituted alkyl 3-(dimethylamino)prop-2-enoates as polyfunctional compounds are very useful reagents for the preparation of a variety of heterocyclic systems including those with α -amino and α -hydroxy acid structural element [1][2]. Substitution of the Me₂N group by a CN group leads to 2-substituted 3cyanoprop-2-enoates which we also found as versatile reagents for the preparation of heterocyclic systems such as pyrroles, pyridazines, and pyrimidines [3]. 3-Cyanopropenoates can also act as dipolarophiles in 1,3-dipolar cycloaddition reactions [3]. In continuation of our work in this field, we report on the preparation of (5S)-1-benzoyl-3-[(E)-cyanomethylidene]-5-(methoxycarbonyl)pyrrolidin-2-one (5) and stereoselectivity of cycloaddition reactions with 1,3-dipoles 6-9, which resulted in the formation of spiro and fused heterocyclic systems 12-16. To our best knowledge, no 1,3-dipolar cycloadditions to 5-substituted 3-(cyanomethylidene)pyrrolidin-2-ones has been previously reported in the literature. Just recently, regioselective 1,3-dipolar cycloadditions of CH₂N₂ (**6**) and N-methyl- α -phenylnitrone to 3-(2,2,2-trifluoroethylidene)- γ -lactams were reported to give 6-oxo-1,2,7-triazaspiro[4.4]non-1-ene and 6-oxo-1-oxa-2,7diazaspiro[4.4]nonane, respectively [4], and, on the other hand, cycloaddition of 2,4,6-trimethylbenzonitrile oxide to (S)-1-(tert-butoxycarbonyl)-5-(ethoxycarbonyl)-3methylidenepyrrolidin-2-one was also reported to give (55,85)-7-(tert-butoxycarbonyl)-8-(ethoxycarbonyl)-3-(2,4,6-trimethylphenyl)-6-oxo-1-oxa-2,7-diazaspiro[4.4]non-2-ene in a regiospecific and stereoselective manner [5].

Results and Discussion. – Starting from L-pyroglutamic acid (1), (5S)-1-benzoyl-3-[(*E*)-(dimethylamino)methylidene]-5-(methoxycarbonyl)pyrrolidin-2-one (4) was prepared by modified procedures described in the literature¹), followed by treatment with

¹) For the preparation of compound **2**, see [6]; for the preparation of (*S*)-5-(alkoxycarbonyl)-3-[(dimethylamino)methylidene]pyrrolidin-2-ones, see [7].

i) SOCl₂/MeOH, 0°-r.t. ii) MeCN, 4-(dimethylamino)pyridine, Et₃N, PhCOCl. iii) (Me₂N)₂CHO'Bu toluene, 100°. iv) KCN, AcOH, r.t.

KCN in AcOH to give (5S)-1-benzoyl-3-[(*E*)-cyanomethylidene]-5-(methoxycarbonyl)pyrrolidin-2-one (**5**; *Scheme 1*). The configuration of the exocyclic C=C bond in **4** and **5** was determined by NMR. Chemical shifts, coupling constants, and interatomic distances, determined by NOESY experiments, are in agreement with the proposed structure²) (*Fig. 1*).

Compound 4

```
Compound 5
```


Fig. 1. NMR Data for the determination of the configuration of the exocyclic C=C bond

Cycloaddition reactions were performed with the following 1,3-dipoles: CH_2N_2 (6) [9], 2,4,6-trimethoxybenzonitrile oxide (7) [10], *N*-phenylbenzonitrile imine 8, and *N*-phenyl-4-chlorobenzonitrile imine 9. Both compounds, 8 and 9, were generated by

²) Calculated chemical-shift values (δ [ppm]) for olefinic protons (H-C(3')) in compounds 4 and 5 were obtained by chemical-shift increments [8].

Huisgen's in situ method from the corresponding *N*-phenylbenzohydrazonoyl chloride (**10**) and 4-chloro-*N*-phenylbenzohydrazonoyl chloride (**11**), respectively [11-13]. Cycloadditions of 1,3-dipoles **6**–**9** to pyrrolidinone **5** were regiospecific in all cases. Regiochemistry, which was cofirmed by NMR characterization, is also in accordance with regiochemistry of analogous reactions [4][5][14][15].

Cycloaddition of CH_2N_2 (6) to pyrrolidinone 5 afforded (4*S*,5*S*,8*S*)-7-benzoyl-4cyano-8-(methoxycarbonyl)-1,2,7-triazaspiro[4.4]non-1-en-6-one (12) together with a diastereoisomer in 38% de. Similarly, treatment with 7 gave (4*S*,5*S*,8*S*)-7-benzoyl-4cyano-8-(methoxycarbonyl)-1-oxa-2,7-diazaspiro[4.4]-2-en-6-one (13) together with a diastereoisomer in 20% de. Isomerically pure compounds 12 and 13 were prepared by crystallization of crude products (*Scheme 2*). The stereoselectivity of these cycloadditions was very poor, probably due to a large distance between the directing stereocenter at C(5) and the reactive site. We also presume that *N*-benzoyl residue, which could be preferably *trans*-oriented with respect to the 5-(methoxycarbonyl) group, contributes to lower the stereoselectivity by directing the 1,3-dipole to approach from the opposite side. However, the degree of stereoselectivity is in accordance with

i) CH₂N₂ (6) Et₂O, -10°, 12 h. ii) 2,4,6-Trimethoxybenzonitrile oxide (7), CHCl₃, reflux, 2 h; iii) N-phenylbenzohydrazonoyl chloride (10), Et₃N, CH₂Cl₂, reflux, 0.5 h. iv) 4-Chloro-N-phenylbenzohydrazonoyl chloride (11), Et₃N, CH₂Cl₂, reflux, 0.5 h. v) 2,4,6-Trimethoxybenzonitrile oxide (7), Et₃N, CH₂Cl₂, reflux, 0.5 h.

Compound	de [%] ^a)	Yield ^b) [%]
12	38	42
13	20	44
14	61	36
15	56	47
16	85	58

^a) Determined by ¹H-NMR. ^b) Yield of isolated compound after purification.

that reported for an analogous reaction [5] (*Scheme 3*). The structure of compound **13** was also confirmed by X-ray structural analysis (*Fig. 2* and *Table*).

On the other hand, cycloadditions of nitrile imines **8** and **9** gave racemic *rel*-(3aR,4S,6aR)-3-aryl-5-benzoyl-6a-(cyanomethyl)-4-(methoxycarbonyl)-6-oxo-1-phenyl-3a,6a,4,5-tetrahydro-1*H*,6*H*-pyrrolo[3,4-*c*]pyrazoles **14** and **15** in 61 and 56% de, respectively. Cycloaddition of nitrile oxide **7**, performed in the presence of Et₃N, also gave pyrrolo[3,4-*d*]isoxazole **16** in 85% de (*Scheme 2*). We first thought that Et₃N, used for *in situ* generation of *N*-phenylbenzonitrile imines **8** and **9** from the corresponding *N*-phenylbenzohydrazonoyl chlorides **10** and **11**, respectively, promoted isomerization and racemization of **5** into endocyclic isomer **17**. Consequently, this would explain the formation of pyrrolo[3,4-*c*]pyrazoles **14** and **15**. However, treatment of **5** with CH₂N₂ in the presence of Et₃N, or with Et₃N itself, gave only inseparable mixtures of unidentified products. Although at this moment we do not have a firm proof for the mechanism leading to the formation of racemic fused compounds **14–16**, we assume that the tautomeric form **17**, which is in equilibrium with tautomer **18**, might be responsible for racemization and formation of fused compounds **14–16**. Preferential approach of 1,3-

Fig. 2. ORTEP View of 13, showing the labeling of the non-H-atoms [16]. Ellipsoids at 40% probability level.

$\begin{tabular}{ c c c c c } \hline Crystal Data \\ \hline Chemical formula & C_{28}H_{21}N_4O_4Cl & C_{25}H_{23}N_3O_8 \\ \hline Chemical formula weight & 512.95 & 493.47 \\ \hline Cell setting & Monoclinic & Orthorombic \\ Space group & C12/c1 & P2_12_12_1 \\ a [Å] & 22.5566(6) & 0.445(1) \\ b [Å] & 7.6837(6) & 13.0551(8) \\ c [Å] & 30.0133(2) & 18.005(1) \\ \hline \end{array}$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	rystal Data
$\begin{array}{cccc} \mbox{Chemical formula weight} & 512.95 & 493.47 \\ \mbox{Cell setting} & \mbox{Monoclinic} & \mbox{Orthorombic} \\ \mbox{Space group} & \mbox{C12/c1} & \mbox{P2}_{12}_{21}_{21} \\ a \left[\mathring{A} \right] & 22.5566(6) & 0.445(1) \\ b \left[\mathring{A} \right] & 7.6837(6) & 13.0551(8) \\ c \left[\mathring{A} \right] & 30.0133(2) & 18.005(1) \\ \end{array}$	hemical formula
Cell settingMonoclinicOrthorombicSpace group $C12/c1$ $P2_12_12_1$ a [Å]22.5566(6)0.445(1) b [Å]7.6837(6)13.0551(8) c [Å]30.0133(2)18.005(1)	hemical formula weight
Space group $C12/c1$ $P2_12_12_1$ a [Å] $22.5566(6)$ $0.445(1)$ b [Å] $7.6837(6)$ $13.0551(8)$ c [Å] $30.0133(2)$ $18.005(1)$	ell setting
a [Å]22.5566(6)0.445(1) b [Å]7.6837(6)13.0551(8) c [Å]30.0133(2)18.005(1)	pace group
$ \begin{array}{c} b \begin{bmatrix} \dot{A} \end{bmatrix} & 7.6837(6) & 13.0551(8) \\ c \begin{bmatrix} \dot{A} \end{bmatrix} & 30.0133(2) & 18.005(1) \end{array} $	Å]
c [Å] 30.0133(2) 18.005(1)	[Å]
	[Å]
α [°] 90.0000 90.0000	[°]
β [β] 103.756(4) 90.0000	[°]
y [°] 90.0000 90.0000	[°]
$V[Å^3]$ 5052.65(43) 2455.2(3)	۲ [ų]
Z 8 4	
Density [Mgm ⁻³] 1.349 1.335	Density [Mgm ⁻³]
Radiation type MoK _a MoK _a	adiation type
Wavelength 0.71069 0.71069	Vavelength
No. of refl. for cell parameters 75 50	o. of refl. for cell parameters
θ Range [°] 7.9-16.2 10.0-16.4	Range [°]
μ [mm ⁻¹] 1.8878 0.944	[mm ⁻¹]
Temp. [K] 293(1) 293(1)	emp. [K]
Crystal form Prism	rystal form
Crystal size [mm] $0.65 \times 0.49 \times 0.21$	rystal size [mm]
Crystal color Colorless Colorless	rystal color
Data Collection	Pata Collection
Diffractometer Enraf Nonius CAD-4 diffractometer	Diffractometer
Data collection method $\omega/2\theta$ scans	Pata collection method
Absorption correction None	bsorption correction
No. of measured refl. 24409 23740	lo. of measured refl.
No. of independent refl. 6530 3328	o. of independent refl.
No. of observed refl. 3312 2464	o. of observed refl.
Criterion of observed refl. $I > 2.5\sigma(I)$ $I > 2.5\sigma(I)$	riterion of observed refl.
R _{int} 0.0216 0.0251	int
$\theta_{\max}^{[\circ]}$ 28 28	max [°]
Range of h, k, l $-29 \rightarrow h \rightarrow 29$ $-13 \rightarrow h \rightarrow 13$	ange of h, k, l
$-10 \rightarrow k \rightarrow 10$ $-17 \rightarrow k \rightarrow 17$	
$-39 \rightarrow l \rightarrow 39$ $-23 \rightarrow l \rightarrow 23$	
No. of standard refl. 3	o. of standard refl.
Frequency of standard refl. Every 20000 s of scaning time	requency of standard refl.
Intensity decay [%] -8.19 -0.30	itensity decay [%]

Table. Crystallographic Data for Compounds 13 and 15

dipoles 7-9 from the less hindered side of 17 should give 14 and 16 with *rel*-(3a*R*,4*S*,6a*R*)-configuration. Diastereoselectivity of these reactions was much higher because of the pronounced stereo-inductive effect of the MeOOC group, which is adjacent to the reactive site (*Scheme 4*). The structure of compound 16 was also confirmed by X-ray structural analysis³) (*Fig. 3*).

³) X-Ray data of structure analyses of the compounds **13** and **16** will be published elsewhere.

Fig. 3. ORTEP View of 15, showing the labeling of the non-H-atoms [16]. Ellipsoids at 35% probability level.

Experimental Part

General. All starting materials were commercially available (in most cases from Fluka) and purified following the standard techniques. The following compounds were prepared according to the procedures described in the literature: (S)-5-(Methoxycarbonyl)pyrrolidin-2-one (2) [6], CH₂N₂ (6) [9], 2,4,6-trimethoxybenzonitrile oxide (7) [10], N-phenylbenzohydrazonoyl chloride 10, and 4-chloro-N-phenylbenzohydrazonoyl chloride 11 [11–13]. Product purifications were performed by flash chromatography (FC) on silica gel (Fluka; Kieselgel 60). TLC: Merck, Alufolien Kieselgel 60 F 254, 0.2 mm. M.p.: Kofler micro hot stage. Optical rotations: Perkin-Elmer 241 MC polarimeter. IR: Perkin-Elmer 1310 spectrophotometer. ¹H- and ¹³C-NMR: Bruker Avance DPX 300 spectrometer. Elemental analyses: Perkin-Elmer CHN Analyser 2400. Crude products 12-16 were obtained as mixtures of two isomers: major isomers 12-16 and the corresponding minor isomers. Major isomers 12-16 were isolated, purified, and fully characterized, while minor isomers were detected and partially characterized by recording the ¹H-NMR spectra of crude products. The following workup procedure was applied for ¹H-NMR determination of de of compounds 13-16: After completion of reaction, volatile components were evaporated in vacuo, and the residue purified by FC. The following eluents were used: CHCl₃/ MeOH 25:1 (14/minor isomer and 15/minor isomer), Et₂O/petroleum ether 1:1 (13/minor isomer and 16/minor isomer). Fractions containing the product were combined, evaporated in vacuo, and ¹H-NMR spectra of the residue were recorded.

(S)-N-*Benzoyl-5-(methoxycarbonyl)pyrrolidin-2-one* (**3**). PhCOCl (7.266 g, 52 mmol) was added to a soln. of (S)-5-(*methoxycarbonyl)pyrrolidin-2-one* (**2**; 7.300 g, 50 mmol) in pyridine (75 ml), and the mixture was stirred at r.t. for 2 h. Volatile compounds were evaporated *in vacuo*, hexane (150 ml) was added to the residue, the precipitate collected by filtration, and washed with MeOH (100 ml): 10.374 g (84%) of **3**. M.p. 150–152° (MeOH). $[a]_{23}^{D2} = +30.1 (c = 1.1, CH_2Cl_2)$. IR (KBr): 1770–1740 (C=O). ¹H-NMR (300 MHz, (D₆)DMSO): 2.00–2.04 (*m*, H–C(4)); 2.41–2.47 (*m*, H–C(4)); 2.57–2.62 (*m*, H–C(3)); 3.72 (*s*, MeO); 4.84 (*dd*, *J* = 3.9, 8.7, H–C(5)); 7.42–7.47 (*m*, 2 H of Ph); 7.54–7.61 (*m*, 3 H of Ph). ¹³C-NMR (75.5 MHz, CDCl₃): 22.2; 32.1; 53.1; 59.1; 128.3; 129.5; 132.7; 134.1; 170.8; 172.0; 173.8. Anal. calc. for C₁₃H₁₃NO₄ (247.25): C 63.15, H 5.30, N 5.66; found: C 62.96, H 5.20, N 5.58.

(5S)-*1-Benzoyl-3-[*(E)-(*dimethylamino*)*methylidene]-5-(methoxycarbonyl*)*pyrrolidin-2-one* (**4**). A mixture of **3** (2.473 g, 10 mmol), toluene (20 ml), and *tert*-butyl/bis(dimethylamino)methyl ether (2.610 g, 15 mmol) was heated at 90–100° for 2 h, volatile components were evaporated *in vacuo*, and solid residue was crystallized from AcOEt/hexane 2:1 (15 ml). The precipitate was collected by filtration to give 2.237 g (74%) of **4**. M.p. 133–134° (AcOEt). $[\alpha]_{D}^{25} = -36.0 (c = 1.25, CHCl_3)$. IR (KBr): 1745, 1720–1700 (C=O). ¹H-NMR (300 MHz, (D₆)DMSO): 2.94 (*dd*, *J* = 3.1, 14.8, H–C(4)); 3.02 (*s*, Me₂N); 3.37 (*dd*, *J* = 10.7, 14.6, H–C(4)); 3.69 (*s*, MeO); 4.73 (*dd*, *J* = 3.7, 10.2, H–C(5)); 7.02 (*s*, CHNMe₂); 7.35–7.40 (*m*, 2 H of Ph); 7.45–7.51 (*m*, 3 H of Ph). ¹³C-NMR (75.5 MHz, CDCl₃): 27.3; 43.0; 53.3; 56.6; 91.7; 128.3; 129.5; 131.9; 136.1; 148.1; 170.2; 171.7; 172.8. Anal. calc. for C₁₆H₁₈N₂O₄ (302.33): C 63.56, H 6.00, N 9.27; found: C 63.34, H 6.35, N 9.13.

(5S)-*1-Benzoyl-3-[*(E)-*cyanomethylidene]-5-(methoxycarbonyl)pyrrolidin-2-one* (**5**). A soln of **4** (2.983 g, 10 mmol) and KCN (0.715 g, 11 mmol) in AcOH (100%, 20 ml) was left at r.t. for 2 d. Then, the soln was concentrated to one half of the original volume (*ca.* 10 ml) by careful evaporation *in vacuo* ($T < 40^\circ$). H₂O (50 ml) was added to residue and the product extracted with Et₂O (2×50 ml). Org. phases were combined and volatile components evaporated *in vacuo* at 20°. H₂O (10 ml) and MeOH (2 ml) were added to the residue, the mixture was cooled (0°), and the precipitate was collected by filtration and crystallized again from MeOH/H₂O 1: 2 to give 2.075 g (73%) of **5**. M.p. 119–121° (MeOH/H₂O 1: 2). [$a_1^{23} = +71.5$ (*c* = 0.85, CHCl₃). IR (KBr): 2240 (CN), 1750, 1680 (C=O). ¹H-NMR (300 MHz, (D₆)DMSO): 3.20 (*dt*, *J* = 2.7, 2.9, 19.2, H–C(4)); 3.49 (*ddd*, *J* = 3.4, 9.4, 19.2, H–C(4)); 3.73 (*s*, MeO); 5.01 (*dd*, *J* = 3.4, 9.4, H–C(5)); 6.53 (*dd*, *J* = 2.6, 3.4, CHCN); 7.45–7.51 (*m*, 2 H of Ph); 7.58–7.67 (*m*, 3 H of Ph). ¹³C-NMR (75.5 MHz, CDCl₃): 28.7; 53.7; 55.8; 104.2; 115.2; 128.5; 129.6; 133.1; 133.4; 151.6; 163.4; 170.4; 170.7. Anal. calc. for C₁₅H₁₂N₂O₄ (284.27): C 63.38, H 4.26, N 9.85; found: C 63.39, H 4.50, N 9.70.

 $(4S_5S_8S)$ -7-Benzoyl-4-cyano-8-(methoxycarbonyl)-1,2,7-triazaspiro[4.4]non-1-en-6-one (12). A soln. of CH₂N₂ (6) in Et₂O (*ca*. 0.67M, 7.5 ml, 5 mmol) was added to a soln. of **5** (0.284 g, 1 mmol) in Et₂O (5 ml). The mixture was left at -10° for 12 h and the precipitate collected by filtration to give a mixture of **12** and its isomer in a ratio of 69:31 (the same ratio of isomers was also obtained after evaporation of the reaction mixture). Yield: 95% (0.30 g). [α]_{D3}²³ = +350 (c=0.42, CH₂Cl₂). Anal. calc. for C₁₆H₁₄N₄O₄ (326.31): C 58.89, H 4.32, N 17.17; found: C 58.65, H 4.29, N 17.09.

Crystallization from CH₂Cl₂/Et₂O 3 :1 gave 0.136 g (42%) of isomerically pure **12**. M.p. 171 – 173° (CH₂Cl₂/ Et₂O 3 :1). $[\alpha]_D^{23} = + 433$ (*c* = 0.42, CH₂Cl₂). IR (KBr): 2240 (CN), 1760 – 1730, 1700 – 1680 (C=O). ¹H-NMR (300 MHz, (D₆)DMSO): 2.63 (*dd*, J = 5.6, 14.0, H–C(9)); 3.24 (*dd*, J = 8.2, 13.9, H–C(9)); 3.73 (*dd*, J = 4.9, 9.4, H–C(4)); 3.78 (*s*, MeO); 4.97 (*dd*, J = 9.4, 18.5, H–C(3)); 5.19 (*dd*, J = 5.3, 18.5, H–C(3)); 5.32 (*dd*, J = 5.8, 8.5, H–C(8)); 7.49 (*t*, J = 7.6, 2 H of Ph); 7.62 (*t*, J = 7.5, 2 H of Ph); 7.75 (*d*, J = 7.2, 1 H of Ph). ¹³C-NMR (75.5 MHz, (D₆)DMSO): 28.8; 29.3; 52.8; 56.5; 82.2; 98.2; 117.8; 127.9; 129.3; 132.5; 132.9; 167.9; 169.3; 170.2. Anal. calc. for C₁₆H₁₄N₄O₄ (326.31): C 58.89, H 4.32, N 17.17; found: C 58.43, H 4.41, N 17.24. *Minor isomer:* ¹H-NMR (300 MHz, (D₆)DMSO): 2.72 (*dd*, J = 2.6, 14.3, H–C(9)); 3.12 (*dd*, J = 10.2, 14.3, H–C(9)); 3.69 (*dd*, J = 4.9, 9.4, H–C(4)); 3.78 (*s*, MeO); 4.94 (*dd*, J = 9.4, 18.5, H–C(3)); 5.19 (*dd*, J = 4.9, 18.5, H–C(3)); 5.32 (*dd*, J = 2.6, 10.2, H–C(8)).

(4S,5S,8S)-7-Benzoyl-4-cyano-8-(methoxycarbonyl)-3-(2,4,6-trimethoxyphenyl)-1-oxa-2,7-diazaspiro[4.4]non-2-en-6-one (**13**). A mixture of **5** (0.284 g, 1 mmol), 2,4,6-trimethoxybenzonitrile oxide (**7**; 0.209 g, 1 mmol), and CHCl₃ (10 ml) was heated under reflux for 2 h, cooled, and volatile compounds were evaporated *in vacuo*. EtOH (10 ml) was added to the residue, the mixture was cooled (-15°) , and the precipitate was collected by filtration to give 0.217 g (44%) of **13**. M.p. 213–215°. $[a]_{13}^{23} = +400$ (c = 0.60, CH₂Cl₂). IR (KBr): 2260 (CN), 1760, 1690 (C=O). ¹H-NMR (300 MHz, CDCl₃): 2.73 (*dd*, J = 14.7, 5.3, H–C(9)); 3.00 (*dd*, J = 14.6, 8.3, H–C(9)); 3.82 (*s*, MeO); 3.84 (*s*, MeO); 3.86 (*s*, MeO); 5.01 (*dd*, J = 5.5, 8.1, H–C(8)); 5.28 (*s*, H–C(4)); 6.15 (*s*, 2 H of Ar); 7.44–7.49 (*m*, 2 H of Ph); 7.57–7.62 (*m*, 1 H of Ph); 7.72–7.75 (*m*, 1 H of Ph). ¹³C-NMR (75.5 MHz, CDCl₃): 33.1; 48.4; 53.7; 55.86; 55.93; 56.5; 88.2; 91.4; 96.5; 113.8; 128.5; 129.9; 132.8; 133.5; 147.6; 160.7; 164.2; 169.1; 170.0; 171.0. Anal. calc. for C₂₅H₂₃N₃O₈ (493.47): C 60.84, H 4.69; N 8.51; found: C 60.62; H 5.04; N 8.42. *Minor isomer:* ¹H-NMR (300 MHz, CDCl₃): 5.37 (*s*, H–C(4)).

General Procedure for the Preparation of rel-(3aR,4S,6aR)-3-Aryl-5-benzoyl-6a-(cyanomethyl)-4-(methoxycarbonyl)-6-oxo-1-phenyl-3a,6a,4,5-tetrahydro-1H,6H-pyrrolo[3,4-c]pyrazoles **14** and **15**. A hydrazonoyl chloride **10** or **11** (1.0 mmol) and Et₃N (0.2 ml, 1.5 mmol) were added to a soln. of **5** (0.284 g, 1.0 mmol) in CH₂Cl₂ (5 ml), and the mixture was heated at reflux temp. for 30 min, cooled, and volatile components were evaporated *in vacuo*. EtOH (10 ml) was added to the residue, the mixture was cooled (-15°), and the precipitate was collected by filtration to give a pyrrolo[3,4-c]pyrazole (**14** or **15**).

rel-(*3a*R,4\$,6*a*R)-5-*Benzoyl-6a*-(*cyanomethyl*)-1,3-*diphenyl-4*-(*methoxycarbonyl*)-6-*oxo*-3*a*,4,5,6*a*-*tetrahy-dro-1*H,6H-*pyrrolo*[*3*,4-*c*]*pyrazole* (**14**). Compound **14** was prepared from **5** (0.284 g, 1.0 mmol), *N*-phenyl-benzohydrazonoyl chloride (**10**; 0.231 g, 1.0 mmol), and Et₃N (0.2 ml, 1.5 mmol). Yield: 47% (0.225 g). M.p. 203–205° (EtOH/DMF 20:1). $[a]_{23}^{23} = -10.3$ (c = 0.4, CH₂Cl₂). IR (KBr): 2240 (CN), 1750, 1690 (C=O). ¹H-NMR (300 MHz, (D₆)DMSO): 3.12 (d, J = 17.3, CH₂); 3.59 (d, J = 17.3, CH₂); 3.86 (s, MeO); 4.91 (d, J = 3.0, H–C(3a)); 5.02 (d, J = 3.0, H–C(4)); 7.08–7.13 (m, 1 H of Ph); 7.33–7.59 (m, 12 H of Ph); 7.89–7.92 (m, 2 H of Ph). ¹³C-NMR (75.5 MHz, (D₆)DMSO): 22.5; 52.0; 54.1; 61.0; 75.1; 116.8; 119.3; 123.9; 127.3; 129.0; 129.6; 129.8; 129.9; 130.6; 133.6; 133.2; 133.7; 142.9; 148.9; 169.2; 170.1; 170.9. Anal. calc. for C₂₈H₂N₄O₄ (478.51): C 70.28, H 4.63, N 11.71; found: C 70.21, H 4.63, N 11.68. *Minor isomer:* ¹H-NMR (300 MHz, (D₆)DMSO): 5.09 (d, J = 10.2, H–C(3a)); 5.49 (d, J = 10.2, H–C(4)).

rel-(*3a*,4,5-6*a*R)-5-*Benzoyl*-3-(4-chlorophenyl)-6*a*-(cyanomethyl)-4-(methoxycarbonyl)-6-oxo-1-phenyl-3*a*, 4,5,6*a*-tetrahydro-1H,6H-pyrrolo[3,4-c]pyrazole (**15**). Compound **15** was prepared from **5** (0.284 g, 1.0 mmol), 4-chloro-*N*-phenylbenzohydrazonoyl chloride (**11**; 0.265 g, 1.0 mmol), and Et₃N (0.2 ml, 1.5 mmol). Yield: 36% (0.184 g). M.p. 187–189° (EtOH/DMF 20 : 1). $[\alpha]_D^{23} = 1.3$ (c = 0.30, CH₂Cl₂). IR (KBr): 2260 (CN), 1770–1730, 1690–1670 (C=O). ¹H-NMR (300 MHz, (D₆)DMSO): 3.13 (d, J = 17.7, CH₂); 3.57 (d, J = 17.3, CH₂); 3.86 (s, MeO); 4.92 (d, J = 3.0, H–C(3a)); 5.03 (d, J = 3.0, H–C(4)); 7.11 (t, J = 7.2, 1 H of Ph); 7.33–7.42 (m, 6 H of Ph); 7.46 (m, 2 H of Ph); 7.54–7.59 (m, 1 H of Ph); 7.64 (d, J = 6.8, 2 H of Ar); 7.90 (d, J = 6.8, 2 H or Ar). ¹³C-NMR (75.5 MHz, (D₆)DMSO): 22.4; 51.8; 54.1; 60.9; 75.4; 116.8; 119.3; 124.0; 128.9; 129.5; 129.5; 129.8; 129.8; 129.9; 133.2; 133.7; 135.1; 142.8; 148.0; 169.1; 170.1; 170.8. Anal. calc. for C₂₈H₂₁N₄O₄Cl (512.95): C 65.56, H 4.13, N 10.92; found: C 65.74, H 4.18, N 10.98. *Minor isomer*: ¹H-NMR (300 MHz, (D₆)DMSO): 5.08 (d, J = 10.2, H–C(3a)); 5.48 (d, J = 10.2, H–C(4)).

rel-(*3a*R,4S,6*a*R)-5-*Benzoyl-6a*-(*cyanomethyl*)-4-(*methoxycarbonyl*)-6-*oxo*-3-(2,4,6-trimethoxyphenyl)-3*a*, 4,5,6*a*-tetrahydro-1H,6H-pyrrolo[3,4-d]isoxazole (**16**). 2,4,6-Trimethoxybenzonitrile oxide (**7**; 0.209 g, 1.0 mmol), and Et₃N (0.2 ml, 1.5 mmol) were added to a soln. of **5** (0.284 g, 1.0 mmol) in CHCl₃ (5 ml), and the mixture was heated at reflux temp. for 2 h, cooled, and volatile components were evaporated *in vacuo*. EtOH (10 ml) was added to the residue, the mixture was cooled (-15°) , and the precipitate was collected by filtration to give 0.286 g (58%) of **16**. M.p. 226–228° (EtOH/DMF 20:1). [*a*] $_{23}^{23}$ =+ 0.4 (*c* = 0.98, CH₂Cl₂). ¹H-NMR (300 MHz, (D₆)DMSO): 3.26 (*d*, *J* = 17.3, CH₂); 3.42 (*d*, *J* = 17.3, CH₂); 3.71 (*s*, MeO); 3.74 (*s*, MeO); 3.85 (*s*, MeO); 4.46 (*d*, *J* = 0.9, H–C(3a)); 4.65 (*d*, *J* = 1.0, H–C(4)); 6.37 (*s*, 2 H of Ar); 7.53–7.60 (*m*, 4 H of Ar); 7.64–7.72 (*m*, 1 H of Ar). ¹³C-NMR (75.5 MHz, (D₆)DMSO): 22.1; 54.3; 54.5; 56.5; 57.0; 58.8; 86.9; 92.2; 96.2; 116.5; 129.4; 129.5; 132.9; 134.3; 154.6; 160.2; 169.6; 169.9; 170.2. Anal. calc. for $C_{25}H_{23}N_3O_8$ (493.47): C 60.84, H 4.69, N 8.51; found: C 60.47, H 4.81, N 8.44. *Minor isomer:* ¹H-NMR (300 MHz, (D₆)DMSO): 4.75 (*d*, *J* = 4.9, H–C(3a)).

REFERENCES

- B. Stanovnik, 'Methyl 2-Benzoylamino-3-dimethylaminopropenoate in the Synthesis of Heterocyclic Chemistry', 'Progress in Heterocyclic Chemistry', Vol. 5, Eds. H. Suschitzky and E. F. V. Scriven, Pergamon Press, Oxford, 1992, pp. 34–53.
- [2] B. Stanovnik, Molecules 1996, 1, 123.
- [3] L. Pizzioli, B. Ornik, J. Svete, B. Stanovnik, Helv. Chim. Acta 1998, 81, 231.
- [4] J.-P. Bouillon, Z. Janousek, H. G. Viehe, B. Tinant, J.-P. Declerq, J. Chem. Soc., Perkin Trans. 1 1996, 1853.
- [5] P. Micuch, L. Fishera, V. Ondrus, P. Ertl, Molecules 1997, 2, 57.
- [6] S. Saijo, M. Wada, J.-I. Himizu, A. Ishida, Chem. Pharm. Bull. 1980, 28, 1449.
- [7] a) S. Danishefsky, E. Bermann, L. A. Clizbe, M. Hirama, J. Am. Chem. Soc. 1979, 101, 4385;
 b) A. N. Bowler, P. M. Doyle, D. W. Young, J. Chem. Soc., Chem. Commun. 1991, 314; c) R. A. August, J. A. Khan, C. M. Moody, D. W. Young, Tetrahedron Lett. 1992, 33, 4617; d) T. Katoh, Y. Nagata, Y. Kobayashi, K. Arai, J. Minami, S. Terashima, *ibid*. 1993, 34, 5743; e) T. Katoh, Y. Nagata, Y. Kobayashi, K. Arai, J. Minami, S. Terashima, 1994, 50, 6221; f) A. Dinsmore, P. M. Doyle, D. W. Young, Tetrahedron Lett. 1995, 36, 7503.
- [8] E. L. Eliel, S. H. Wilen, 'Stereochemistry of Alkenes, Stereochemistry of Organic Compounds', A Wiley-Interscience Publication, John Wiley & Sons, New York, 1994, pp. 569–573, and ref. cit. therein. Interatomic distances were obtained by NOESY experiments.
- [9] T. J. de Boer, H. J. Backer, Org. Synth., Coll. Vol. 4 1963, 250.
- [10] C. Grundmann, J. M. Dean, J. Org. Chem. 1965, 30, 2809.
- [11] R. Huisgen, M. Seidel, G. Wallbillich, H. Knupfer, Tetrahedron 1962, 17, 3.
- [12] R. Huisgen, R. Grashey, M. Seidel, G. Wallbillich, H. Knupfer, R. Schmidt, *Liebigs Ann. Chem.* 1962, 653, 105.
- [13] H. S. Clovis, A. Eckell, R. Huisgen, R. Sustmann, Chem. Ber. 1967, 100, 60.
- [14] L. Fišera, L. Jaroškova, I. Matejkova, Heterocycles 1995, 40, 271.
- [15] L. Fišera, L. Jaroškova, A. Lévai, E. Jedlovská, G. Toth, M. Polákova, Heterocycles 1997, 45, 1651.
- [16] C. K. Johnson, ORTEPII. report ORNL-5138. Oak Ridge National Laboratory, Tenessee, USA, 1976.

Received October 1, 1998